Seminars

Elastic waves in soft tissues: inverse analysis, experiments, simulations, validation

Speaker: Michel Destrade
Affiliation: Chair of Applied Mathematics at NUI Galway
When: Thursday 18th October 2018
Time: 14:00:00
Abstract: Biological soft tissues and soft gels are difficult to study and model mathematically. Bioengineers often see them as engineering materials and try to evaluate their mechanical properties with standard testing protocols, such as tensile testing, simple shear, torsion, etc. These processes are destructive for tissues, as a sample is taken out of the body and placed in a device. The resulting measured parameters and models are expected to be very different from their in vivo counterparts. To test soft tissues properly, non¬-destructively, and non¬-invasively, we can rely on elastic waves. We can study the influence of pre¬stress on their speed and obtain the nonlinear elastic parameter by inverse analysis. This idea forms the basis of the theory of acousto-¬elasticity, which can be dated back to early works of Brillouin, and has been used successfully in the past for "hard" elastic solids such as rocks and metals. With this talk, we will explore the extension of acousto-¬elasticity to "soft" elastic solids, which can be subjected to large deformations in service. We will look at theoretical, numerical, experimental, and even clinical results, generated in particular on gels, brain, breast, and skin. Contact: pasquale.ciarletta@polimi.it